User Tools

Site Tools


python:numpy

This is an old revision of the document!


NumPy

Numerical Python

ndarray

Similar to pythons list object.

  • All objects in an ndarray must have same datatype
  • All math operators work on each individual element in an ''ndarray'
# Properties
a = np.ndarray((2,3,4))
 
a.shape      # Tuple describing shape, e.g. (2,3,4)
a.ndim       # Number of dimensions, equal to len(a.shape), e.g. 3
a.size       # Total number of elements
a.dtype      # Datatype of the elements
a.itemsize   # Size in byte of an element

Indexing

a = np.arange(10)   # a => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a1 = a[:6:2]        # a1 => [0,2,4]
a[:6:2] = 30        # a => [30, 1, 30, 3, 30, 5, 6, 7, 8, 9]
# 2d-array
B = A[row_start: row_stop : (row_step) , col_start : col_stop : (col_step)] 

Datatypes

Name Datatype
i integer
b boolean
u unsigned integer
f float
M datetime
m timedelta
O python object
S zero terminated string
U unicode string
V raw data (void)

Good functions

import numpy as np
 
a1 = np.zeros((4,3,2)) # Create 3-dimensional array with zeros
 
a2 = np.ones((3,4,5)) # Create 3-dimensional array with ones
 
a3 = np.arange(1,10) # Array with values 1..9
a4 = np.arange(10) # Array with values 0..9
a5 = np.arange(1,20,5) # Each 5th value between 1 to 19; [1, 6, 11, 16]
python/numpy.1628106087.txt.gz · Last modified: 2022/09/12 00:30 (external edit)

Except where otherwise noted, content on this wiki is licensed under the following license: CC0 1.0 Universal
CC0 1.0 Universal Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki